home *** CD-ROM | disk | FTP | other *** search
/ IRIX Base Documentation 2002 November / SGI IRIX Base Documentation 2002 November.iso / usr / share / catman / p_man / cat3 / SCSL / dpsldlt.z / dpsldlt
Encoding:
Text File  |  2002-10-03  |  38.4 KB  |  529 lines

  1.  
  2.  
  3.  
  4. DDDDPPPPSSSSLLLLDDDDLLLLTTTT((((3333SSSS))))                                                        DDDDPPPPSSSSLLLLDDDDLLLLTTTT((((3333SSSS))))
  5.  
  6.  
  7.  
  8. NNNNAAAAMMMMEEEE
  9.      DDDDPPPPSSSSLLLLDDDDLLLLTTTT____DDDDeeeessssttttrrrrooooyyyy, DDDDPPPPSSSSLLLLDDDDLLLLTTTT____EEEExxxxttttrrrraaaaccccttttPPPPeeeerrrrmmmm, DDDDPPPPSSSSLLLLDDDDLLLLTTTT____FFFFaaaaccccttttoooorrrr, DDDDPPPPSSSSLLLLDDDDLLLLTTTT____FFFFaaaaccccttttoooorrrrOOOOOOOOCCCC,
  10.      DDDDPPPPSSSSLLLLDDDDLLLLTTTT____OOOOOOOOCCCCLLLLiiiimmmmiiiitttt, DDDDPPPPSSSSLLLLDDDDLLLLTTTT____OOOOOOOOCCCCPPPPaaaatttthhhh, DDDDPPPPSSSSLLLLDDDDLLLLTTTT____OOOOrrrrddddeeeerrrriiiinnnngggg, DDDDPPPPSSSSLLLLDDDDLLLLTTTT____PPPPrrrreeeepppprrrroooocccceeeessssssss,
  11.      DDDDPPPPSSSSLLLLDDDDLLLLTTTT____PPPPrrrreeeepppprrrroooocccceeeessssssssZZZZ, DDDDPPPPSSSSLLLLDDDDLLLLTTTT____SSSSoooollllvvvveeee, DDDDPPPPSSSSLLLLDDDDLLLLTTTT____SSSSoooollllvvvveeeeMMMM, DDDDPPPPSSSSLLLLDDDDLLLLTTTT____SSSSttttoooorrrraaaaggggeeee -
  12.      Parallel sparse symmetric solver for linear systems of real equations
  13.  
  14. SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
  15.      Fortran synopsis:
  16.  
  17.           SSSSUUUUBBBBRRRROOOOUUUUTTTTIIIINNNNEEEE DDDDPPPPSSSSLLLLDDDDLLLLTTTT____DDDDEEEESSSSTTTTRRRROOOOYYYY ((((_t_o_k_e_n))))
  18.           IIIINNNNTTTTEEEEGGGGEEEERRRR _t_o_k_e_n
  19.  
  20.           SSSSUUUUBBBBRRRROOOOUUUUTTTTIIIINNNNEEEE DDDDPPPPSSSSLLLLDDDDLLLLTTTT____EEEEXXXXTTTTRRRRAAAACCCCTTTTPPPPEEEERRRRMMMM ((((_t_o_k_e_n,,,, _p_e_r_m))))
  21.           IIIINNNNTTTTEEEEGGGGEEEERRRR _t_o_k_e_n,,,, _p_e_r_m(*)
  22.  
  23.           SSSSUUUUBBBBRRRROOOOUUUUTTTTIIIINNNNEEEE DDDDPPPPSSSSLLLLDDDDLLLLTTTT____FFFFAAAACCCCTTTTOOOORRRR ((((_t_o_k_e_n,,,, _n,,,, _p_o_i_n_t_e_r_s,,,, _i_n_d_i_c_e_s,,,, _v_a_l_u_e_s))))
  24.           IIIINNNNTTTTEEEEGGGGEEEERRRR _t_o_k_e_n,,,, _n,,,, _p_o_i_n_t_e_r_s(*),,,, _i_n_d_i_c_e_s(*)
  25.           DDDDOOOOUUUUBBBBLLLLEEEE PPPPRRRREEEECCCCIIIISSSSIIIIOOOONNNN _v_a_l_u_e_s(*)
  26.  
  27.           SSSSUUUUBBBBRRRROOOOUUUUTTTTIIIINNNNEEEE DDDDPPPPSSSSLLLLDDDDLLLLTTTT____FFFFAAAACCCCTTTTOOOORRRROOOOOOOOCCCC ((((_t_o_k_e_n,,,, _n,,,, _p_o_i_n_t_e_r_s,,,, _i_n_d_i_c_e_s,,,, _v_a_l_u_e_s))))
  28.           IIIINNNNTTTTEEEEGGGGEEEERRRR _t_o_k_e_n,,,, _n,,,, _p_o_i_n_t_e_r_s(*),,,, _i_n_d_i_c_e_s(*)
  29.           DDDDOOOOUUUUBBBBLLLLEEEE PPPPRRRREEEECCCCIIIISSSSIIIIOOOONNNN _v_a_l_u_e_s(*)
  30.  
  31.           SSSSUUUUBBBBRRRROOOOUUUUTTTTIIIINNNNEEEE DDDDPPPPSSSSLLLLDDDDLLLLTTTT____OOOOOOOOCCCCLLLLIIIIMMMMIIIITTTT ((((_t_o_k_e_n,,,, _o_o_c_l_i_m_i_t))))
  32.           IIIINNNNTTTTEEEEGGGGEEEERRRR _t_o_k_e_n
  33.           DDDDOOOOUUUUBBBBLLLLEEEE PPPPRRRREEEECCCCIIIISSSSIIIIOOOONNNN _o_o_c_l_i_m_i_t
  34.  
  35.           SSSSUUUUBBBBRRRROOOOUUUUTTTTIIIINNNNEEEE DDDDPPPPSSSSLLLLDDDDLLLLTTTT____OOOOOOOOCCCCPPPPAAAATTTTHHHH ((((_t_o_k_e_n,,,, _o_o_c_p_a_t_h))))
  36.           IIIINNNNTTTTEEEEGGGGEEEERRRR _t_o_k_e_n
  37.           CCCCHHHHAAAARRRRAAAACCCCTTTTEEEERRRR _o_o_c_p_a_t_h(*)
  38.  
  39.           SSSSUUUUBBBBRRRROOOOUUUUTTTTIIIINNNNEEEE DDDDPPPPSSSSLLLLDDDDLLLLTTTT____OOOORRRRDDDDEEEERRRRIIIINNNNGGGG ((((_t_o_k_e_n,,,, _m_e_t_h_o_d))))
  40.           IIIINNNNTTTTEEEEGGGGEEEERRRR _t_o_k_e_n,,,, _m_e_t_h_o_d
  41.  
  42.           SSSSUUUUBBBBRRRROOOOUUUUTTTTIIIINNNNEEEE DDDDPPPPSSSSLLLLDDDDLLLLTTTT____PPPPRRRREEEEPPPPRRRROOOOCCCCEEEESSSSSSSS ((((_t_o_k_e_n,,,, _n,,,, _p_o_i_n_t_e_r_s,,,, _i_n_d_i_c_e_s,,,,
  43.           _n_o_n__z_e_r_o_s,,,, _o_p_s))))
  44.           IIIINNNNTTTTEEEEGGGGEEEERRRR _t_o_k_e_n,,,, _n,,,, _p_o_i_n_t_e_r_s(*),,,, _i_n_d_i_c_e_s(*)
  45.           IIIINNNNTTTTEEEEGGGGEEEERRRR****8888 _n_o_n__z_e_r_o_s
  46.           DDDDOOOOUUUUBBBBLLLLEEEE PPPPRRRREEEECCCCIIIISSSSIIIIOOOONNNN _o_p_s
  47.  
  48.           SSSSUUUUBBBBRRRROOOOUUUUTTTTIIIINNNNEEEE DDDDPPPPSSSSLLLLDDDDLLLLTTTT____PPPPRRRREEEEPPPPRRRROOOOCCCCEEEESSSSSSSSZZZZ ((((_t_o_k_e_n,,,, _n,,,, _p_o_i_n_t_e_r_s,,,, _i_n_d_i_c_e_s,,,, _m_a_s_k,,,,
  49.           _n_o_n__z_e_r_o_s,,,, _o_p_s))))
  50.           IIIINNNNTTTTEEEEGGGGEEEERRRR _t_o_k_e_n,,,, _n,,,, _p_o_i_n_t_e_r_s(*),,,, _i_n_d_i_c_e_s(*),,,, _m_a_s_k(*)
  51.           IIIINNNNTTTTEEEEGGGGEEEERRRR****8888 _n_o_n__z_e_r_o_s
  52.           DDDDOOOOUUUUBBBBLLLLEEEE PPPPRRRREEEECCCCIIIISSSSIIIIOOOONNNN _o_p_s
  53.  
  54.           SSSSUUUUBBBBRRRROOOOUUUUTTTTIIIINNNNEEEE DDDDPPPPSSSSLLLLDDDDLLLLTTTT____SSSSOOOOLLLLVVVVEEEE ((((_t_o_k_e_n,,,, _x,,,, _b))))
  55.           IIIINNNNTTTTEEEEGGGGEEEERRRR _t_o_k_e_n
  56.           DDDDOOOOUUUUBBBBLLLLEEEE PPPPRRRREEEECCCCIIIISSSSIIIIOOOONNNN _x(*),,,, _b(*)
  57.  
  58.  
  59.  
  60.  
  61.  
  62.  
  63.                                                                         PPPPaaaaggggeeee 1111
  64.  
  65.  
  66.  
  67.  
  68.  
  69.  
  70. DDDDPPPPSSSSLLLLDDDDLLLLTTTT((((3333SSSS))))                                                        DDDDPPPPSSSSLLLLDDDDLLLLTTTT((((3333SSSS))))
  71.  
  72.  
  73.  
  74.           SSSSUUUUBBBBRRRROOOOUUUUTTTTIIIINNNNEEEE DDDDPPPPSSSSLLLLDDDDLLLLTTTT____SSSSOOOOLLLLVVVVEEEEMMMM ((((_t_o_k_e_n,,,, _X,,,, _l_d_x,,,, _B,,,, _l_d_b,,,, _n_r_h_s))))
  75.           IIIINNNNTTTTEEEEGGGGEEEERRRR _t_o_k_e_n,,,, _l_d_x,,,, _l_d_b,,,, _n_r_h_s
  76.           DDDDOOOOUUUUBBBBLLLLEEEE PPPPRRRREEEECCCCIIIISSSSIIIIOOOONNNN _X(*),,,, _B(*)
  77.  
  78.           DDDDOOOOUUUUBBBBLLLLEEEE PPPPRRRREEEECCCCIIIISSSSIIIIOOOONNNN FFFFUUUUNNNNCCCCTTTTIIIIOOOONNNN DDDDPPPPSSSSLLLLDDDDLLLLTTTT____SSSSTTTTOOOORRRRAAAAGGGGEEEE((((_t_o_k_e_n))))
  79.           IIIINNNNTTTTEEEEGGGGEEEERRRR _t_o_k_e_n
  80.  
  81.      C/C++ synopsis:
  82.  
  83.           ####iiiinnnncccclllluuuuddddeeee <<<<ssssccccssssllll____ssssppppaaaarrrrsssseeee....hhhh>>>>
  84.  
  85.           vvvvooooiiiidddd DDDDPPPPSSSSLLLLDDDDLLLLTTTT____DDDDeeeessssttttrrrrooooyyyy ((((iiiinnnntttt _t_o_k_e_n))));;;;
  86.  
  87.           vvvvooooiiiidddd DDDDPPPPSSSSLLLLDDDDLLLLTTTT____EEEExxxxttttrrrraaaaccccttttPPPPeeeerrrrmmmm ((((iiiinnnntttt _t_o_k_e_n,,,, iiiinnnntttt _p_e_r_m[[[[]]]]))));;;;
  88.  
  89.           vvvvooooiiiidddd DDDDPPPPSSSSLLLLDDDDLLLLTTTT____FFFFaaaaccccttttoooorrrr ((((iiiinnnntttt _t_o_k_e_n,,,, iiiinnnntttt _n,,,, iiiinnnntttt _p_o_i_n_t_e_r_s[[[[]]]],,,, iiiinnnntttt
  90.           _i_n_d_i_c_e_s[[[[]]]],,,, ddddoooouuuubbbblllleeee _v_a_l_u_e_s[[[[]]]]))));;;;
  91.  
  92.           vvvvooooiiiidddd DDDDPPPPSSSSLLLLDDDDLLLLTTTT____FFFFaaaaccccttttoooorrrrOOOOOOOOCCCC ((((iiiinnnntttt _t_o_k_e_n,,,, iiiinnnntttt _n,,,, iiiinnnntttt _p_o_i_n_t_e_r_s[[[[]]]],,,, iiiinnnntttt
  93.           _i_n_d_i_c_e_s[[[[]]]],,,, ddddoooouuuubbbblllleeee _v_a_l_u_e_s[[[[]]]]))));;;;
  94.  
  95.           vvvvooooiiiidddd DDDDPPPPSSSSLLLLDDDDLLLLTTTT____OOOOOOOOCCCCLLLLiiiimmmmiiiitttt ((((iiiinnnntttt _t_o_k_e_n,,,, ddddoooouuuubbbblllleeee _o_o_c_l_i_m_i_t))));;;;
  96.  
  97.           vvvvooooiiiidddd DDDDPPPPSSSSLLLLDDDDLLLLTTTT____OOOOOOOOCCCCPPPPaaaatttthhhh ((((iiiinnnntttt _t_o_k_e_n,,,, cccchhhhaaaarrrr _o_o_c_p_a_t_h[[[[]]]]))));;;;
  98.  
  99.           vvvvooooiiiidddd DDDDPPPPSSSSLLLLDDDDLLLLTTTT____OOOOrrrrddddeeeerrrriiiinnnngggg ((((iiiinnnntttt _t_o_k_e_n,,,, iiiinnnntttt _m_e_t_h_o_d))));;;;
  100.  
  101.           vvvvooooiiiidddd DDDDPPPPSSSSLLLLDDDDLLLLTTTT____PPPPrrrreeeepppprrrroooocccceeeessssssss ((((iiiinnnntttt _t_o_k_e_n,,,, iiiinnnntttt _n,,,, iiiinnnntttt _p_o_i_n_t_e_r_s[[[[]]]],,,, iiiinnnntttt
  102.           _i_n_d_i_c_e_s[[[[]]]],,,, lllloooonnnngggg lllloooonnnngggg *_n_o_n__z_e_r_o_s,,,, ddddoooouuuubbbblllleeee *_o_p_s))));;;;
  103.  
  104.           vvvvooooiiiidddd DDDDPPPPSSSSLLLLDDDDLLLLTTTT____PPPPrrrreeeepppprrrroooocccceeeessssssssZZZZ ((((iiiinnnntttt _t_o_k_e_n,,,, iiiinnnntttt _n,,,, iiiinnnntttt _p_o_i_n_t_e_r_s[[[[]]]],,,, iiiinnnntttt
  105.           _i_n_d_i_c_e_s[[[[]]]],,,, iiiinnnntttt _m_a_s_k[[[[]]]],,,, lllloooonnnngggg lllloooonnnngggg *_n_o_n__z_e_r_o_s,,,, ddddoooouuuubbbblllleeee *_o_p_s))));;;;
  106.  
  107.           vvvvooooiiiidddd DDDDPPPPSSSSLLLLDDDDLLLLTTTT____SSSSoooollllvvvveeee ((((iiiinnnntttt _t_o_k_e_n,,,, ddddoooouuuubbbblllleeee _x[[[[]]]],,,, ddddoooouuuubbbblllleeee _b[[[[]]]]))));;;;
  108.  
  109.           vvvvooooiiiidddd DDDDPPPPSSSSLLLLDDDDLLLLTTTT____SSSSoooollllvvvveeeeMMMM ((((iiiinnnntttt _t_o_k_e_n,,,, ddddoooouuuubbbblllleeee _X[[[[]]]],,,, iiiinnnntttt _l_d_x,,,, ddddoooouuuubbbblllleeee _B[[[[]]]],,,, iiiinnnntttt
  110.           _l_d_b,,,, iiiinnnntttt _n_r_h_s))));;;;
  111.  
  112.           ddddoooouuuubbbblllleeee DDDDPPPPSSSSLLLLDDDDLLLLTTTT____SSSSttttoooorrrraaaaggggeeee ((((iiiinnnntttt _t_o_k_e_n))));;;;
  113.  
  114. IIIIMMMMPPPPLLLLEEEEMMMMEEEENNNNTTTTAAAATTTTIIIIOOOONNNN
  115.      These routines are part of the SCSL Scientific Library and can be loaded
  116.      using either the ----llllssssccccssss or the ----llllssssccccssss____mmmmpppp option.  The ----llllssssccccssss____mmmmpppp option
  117.      directs the linker to use the multi-processor version of the library.
  118.  
  119.      When linking to SCSL with ----llllssssccccssss or ----llllssssccccssss____mmmmpppp, the default integer size is
  120.      4 bytes (32 bits). Another version of SCSL is available in which integers
  121.      are 8 bytes (64 bits). This version allows the user access to larger
  122.      memory sizes and helps when porting legacy Cray codes.  It can be loaded
  123.      by using the ----llllssssccccssss____iiii8888 option or the ----llllssssccccssss____iiii8888____mmmmpppp option.  A program may
  124.      use only one of the two versions; 4-byte integer and 8-byte integer
  125.      library calls cannot be mixed.
  126.  
  127.  
  128.  
  129.                                                                         PPPPaaaaggggeeee 2222
  130.  
  131.  
  132.  
  133.  
  134.  
  135.  
  136. DDDDPPPPSSSSLLLLDDDDLLLLTTTT((((3333SSSS))))                                                        DDDDPPPPSSSSLLLLDDDDLLLLTTTT((((3333SSSS))))
  137.  
  138.  
  139.  
  140.      The C and C++ prototypes shown above are appropriate for the 4-byte
  141.      integer version of SCSL. When using the 8-byte integer version, the
  142.      variables of type iiiinnnntttt become lllloooonnnngggg lllloooonnnngggg and the <<<<ssssccccssssllll____ssssppppaaaarrrrsssseeee____iiii8888....hhhh>>>> header
  143.      file should be included.
  144.  
  145. DDDDEEEESSSSCCCCRRRRIIIIPPPPTTTTIIIIOOOONNNN
  146.      DDDDPPPPSSSSLLLLDDDDLLLLTTTT solves sparse symmetric linear systems of the form _A_x = _b where _A
  147.      is a real _n-by-_n symmetric input matrix, _b is a real input vector of
  148.      length _n, and _x is an unknown real vector of length _n.
  149.  
  150.      DDDDPPPPSSSSLLLLDDDDLLLLTTTT uses a direct method. _A is factored into the following form:
  151.  
  152.           _A = _L _D _L_T
  153.  
  154.      where _L is a lower triangular matrix with unit diagonal and _D is a
  155.      diagonal matrix.
  156.  
  157.      Note that NO PIVOTING FOR STABILITY is performed during factorization.
  158.  
  159.      The DDDDPPPPSSSSLLLLDDDDLLLLTTTT library contains five main routines.
  160.  
  161.      *   DDDDPPPPSSSSLLLLDDDDLLLLTTTT____OOOOrrrrddddeeeerrrriiiinnnngggg(((()))) allows the user to select one of five possible
  162.          reordering methods to be used in the matrix preprocessing phase.
  163.  
  164.      *   DDDDPPPPSSSSLLLLDDDDLLLLTTTT____PPPPrrrreeeepppprrrroooocccceeeessssssss(((()))) performs preprocessing operations on the
  165.          structure of _A (heuristic reordering to reduce fill in _L, symbolic
  166.          factorization, etc.).
  167.  
  168.      *   DDDDPPPPSSSSLLLLDDDDLLLLTTTT____FFFFaaaaccccttttoooorrrr(((()))) factors the matrix _A into _L and _D, using the
  169.          previously computed preprocessing data.
  170.  
  171.      *   DDDDPPPPSSSSLLLLDDDDLLLLTTTT____SSSSoooollllvvvveeee(((()))) solves for a vector _x, given an input vector _b.
  172.  
  173.      *   DDDDPPPPSSSSLLLLDDDDLLLLTTTT____DDDDeeeessssttttrrrrooooyyyy(((()))) frees all storage associated with the matrix _A
  174.          (including _L, _D, and various data structures computed during
  175.          preprocessing).
  176.  
  177.      The user can call DDDDPPPPSSSSLLLLDDDDLLLLTTTT____FFFFaaaaccccttttoooorrrr(((()))) several times after a single call to
  178.      DDDDPPPPSSSSLLLLDDDDLLLLTTTT____PPPPrrrreeeepppprrrroooocccceeeessssssss(((()))) to factor multiple matrices with identical non-zero
  179.      structures but different values.  Similarly, the user can call
  180.      DDDDPPPPSSSSLLLLDDDDLLLLTTTT____SSSSoooollllvvvveeee(((()))) several times after a single call to DDDDPPPPSSSSLLLLDDDDLLLLTTTT____FFFFaaaaccccttttoooorrrr(((()))) to
  181.      solve for multiple right-hand-sides.  Also, the user can call
  182.      DDDDPPPPSSSSLLLLDDDDLLLLTTTT____SSSSoooollllvvvveeeeMMMM(((()))) to solve for multiple right-hand-sides all stored in a
  183.      single array.
  184.  
  185.    SSSSppppaaaarrrrsssseeee MMMMaaaattttrrrriiiixxxx FFFFoooorrrrmmmmaaaatttt
  186.      Sparse matrix _A must be input to DDDDPPPPSSSSLLLLDDDDLLLLTTTT in Harwell-Boeing format (also
  187.      known as Compressed Column Storage format).
  188.  
  189.      The matrix is held in three arrays: _p_o_i_n_t_e_r_s, _i_n_d_i_c_e_s, and _v_a_l_u_e_s.  The
  190.      _i_n_d_i_c_e_s array contains the row indices of the non-zeros in _A. The _v_a_l_u_e_s
  191.      array holds the corresponding non-zero values. The _p_o_i_n_t_e_r_s array
  192.  
  193.  
  194.  
  195.                                                                         PPPPaaaaggggeeee 3333
  196.  
  197.  
  198.  
  199.  
  200.  
  201.  
  202. DDDDPPPPSSSSLLLLDDDDLLLLTTTT((((3333SSSS))))                                                        DDDDPPPPSSSSLLLLDDDDLLLLTTTT((((3333SSSS))))
  203.  
  204.  
  205.  
  206.      contains the index in _i_n_d_i_c_e_s for the first non-zero in each column of _A.
  207.      Thus, the row indices for the non-zeros in column _i can be found in
  208.      locations _i_n_d_i_c_e_s[[[[_p_o_i_n_t_e_r_s[[[[_i]]]]]]]] through _i_n_d_i_c_e_s[[[[_p_o_i_n_t_e_r_s[[[[_i+1]]]]-1]]]]. The
  209.      corresponding values can be found in location _v_a_l_u_e_s[[[[_p_o_i_n_t_e_r_s[[[[_i]]]]]]]] through
  210.      _v_a_l_u_e_s[[[[_p_o_i_n_t_e_r_s[[[[_i+1]]]]-1]]]].
  211.  
  212.      For a symmetric matrix _A, the user must input either the lower or upper
  213.      triangle of _A, but not both.  Non-zeroes within a column of _A can be
  214.      stored in any order.
  215.  
  216.      In the following example, the symmetric matrix
  217.  
  218.      1.0
  219.      0.0 3.0
  220.      2.0 0.0 5.0
  221.      0.0 4.0 0.0 6.0
  222.  
  223.  
  224.      would be represented in FORTRAN as follows:
  225.  
  226.       INTEGER pointers(5), indices(6), i
  227.       DOUBLE PRECISION values(6)
  228.       DATA (pointers(i), i = 1, 5) / 1, 3, 5, 6, 7 /
  229.       DATA (indices(i),  i = 1, 6) / 1, 3, 2, 4, 3, 4 /
  230.       DATA (values(i),   i = 1, 6) / 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 /
  231.  
  232.  
  233.      Zero-based indexing is used in C, so the _p_o_i_n_t_e_r_s and _i_n_d_i_c_e_s arrays
  234.      would instead contain the following:
  235.  
  236.      int pointers[]  = {0, 2, 4, 5, 6};
  237.      int indices[]   = {0, 2, 1, 3, 2, 3};
  238.      double values[] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0};
  239.  
  240.  
  241.    OOOOrrrrddddeeeerrrriiiinnnngggg MMMMeeeetttthhhhooooddddssss
  242.      The DDDDPPPPSSSSLLLLDDDDLLLLTTTT____OOOOrrrrddddeeeerrrriiiinnnngggg((((_t_o_k_e_n,,,, _m_e_t_h_o_d)))) routine allows the user to change the
  243.      ordering method used to pre-order the matrix before factorization.  This
  244.      routine must be called before calling DDDDPPPPSSSSLLLLDDDDLLLLTTTT____PPPPrrrreeeepppprrrroooocccceeeessssssss(((()))). Five options
  245.      are currently available for the method parameter:
  246.  
  247.      *   Method 0 performs no pre-ordering
  248.  
  249.      *   Method 1 performs Approximate Minimum Fill ordering
  250.  
  251.      *   Method 2 performs a single nested dissection ordering (default).
  252.          This method is often called "Extreme matrix ordering".
  253.  
  254.      *   Method 3 performs multiple nested dissection orderings (in parallel)
  255.  
  256.  
  257.  
  258.  
  259.  
  260.  
  261.                                                                         PPPPaaaaggggeeee 4444
  262.  
  263.  
  264.  
  265.  
  266.  
  267.  
  268. DDDDPPPPSSSSLLLLDDDDLLLLTTTT((((3333SSSS))))                                                        DDDDPPPPSSSSLLLLDDDDLLLLTTTT((((3333SSSS))))
  269.  
  270.  
  271.  
  272.      *   Method 4 performs multiple nested dissection (the same as in Method
  273.          3), but it uses a feedback file to "learn" from the previous solves
  274.          of the same matrix structure and it performs more orderings. The
  275.          multiple nested dissection technique of Methods 3 and 4 is also
  276.          referred to as "Extreme2 matrix ordering".
  277.  
  278.      Method 2 is significantly more expensive than Method 1, but it usually
  279.      produces significantly better orderings.  Method 3 is especially
  280.      effective on multi-processor systems.  It computes OOOOMMMMPPPP____NNNNUUUUMMMM____TTTTHHHHRRRREEEEAAAADDDDSSSS (where
  281.      OOOOMMMMPPPP____NNNNUUUUMMMM____TTTTHHHHRRRREEEEAAAADDDDSSSS is an environment variable indicating the number of
  282.      processors to be used for parallel computation) matrix orderings using
  283.      different starting points for the algorithm and uses the ordering that
  284.      will lead to the fewest floating-point operations to factorize the
  285.      matrix.
  286.  
  287.      Method 4 is useful only when the same non-zero structure is used for
  288.      multiple solves.  Method 4 keeps a record in a "feedback" file of a
  289.      signature for non-zero structures for a maximum of 200 matrices and of
  290.      the starting point that was saved from a previous solve for that
  291.      structure.  In the next Method 4 ordering for that non-zero structure,
  292.      that best starting point and 2222 **** OOOOMMMMPPPP____NNNNUUUUMMMM____TTTTHHHHRRRREEEEAAAADDDDSSSS ---- 1111 new ones generate
  293.      orderings.  The best ordering is used.  In this way, the quality of
  294.      orderings stay the same or improve over time.
  295.  
  296.      Methods 3 and 4 typically take more time for the matrix preprocessing
  297.      than the default.  However, on large systems or on repeated
  298.      factorizations, significant overall speedups (1.1X to 2X) can be obtained
  299.      compared to Method 2.
  300.  
  301.    EEEExxxxttttrrrraaaaccccttttiiiinnnngggg tttthhhheeee ppppeeeerrrrmmmmuuuuttttaaaattttiiiioooonnnn vvvveeeeccccttttoooorrrr
  302.      Unless ordering Method 0 is used, DDDDPPPPSSSSLLLLDDDDLLLLTTTT applies a symmetric permutation
  303.      to matrix A before the factorization step; the resulting permuted matrix
  304.      generally has significantly less fill-in than the original matrix.  The
  305.      user can obtain the permutation matrix associated with a given token by
  306.      calling DDDDPPPPSSSSLLLLDDDDLLLLTTTT____EEEExxxxttttrrrraaaaccccttttPPPPeeeerrrrmmmm((((_t_o_k_e_n,,,, _p_e_r_m)))). The permutation is returned as
  307.      an integer array of length _n, with 1111 <<<<==== ppppeeeerrrrmmmm((((iiii)))) <<<<==== nnnn (0000 <<<<==== ppppeeeerrrrmmmm[[[[iiii]]]] <<<< nnnn
  308.      for C code).
  309.  
  310.      A value of _k for _p_e_r_m(_i) implies that node _k in the original ordering is
  311.      node _i in the new ordering.
  312.  
  313.    MMMMaaaattttrrrriiiicccceeeessss wwwwiiiitttthhhh zzzzeeeerrrroooossss oooonnnn tttthhhheeee ddddiiiiaaaaggggoooonnnnaaaallll
  314.      As noted above, no pivoting is done for stability during factorization;
  315.      when zero or near-zero pivots are encountered, DDDDPPPPSSSSLLLLDDDDLLLLTTTT usually fails. In
  316.      these cases, it may be possible to use DDDDPPPPSSSSLLLLDDDDLLLLTTTT____PPPPrrrreeeepppprrrroooocccceeeessssssssZZZZ(((()))) to obtain a
  317.      slightly different, but stable, ordering.  The user provides an
  318.      additional integer array, _m_a_s_k, as an argument to DDDDPPPPSSSSLLLLDDDDLLLLTTTT____PPPPrrrreeeepppprrrroooocccceeeessssssssZZZZ(((()))).
  319.      If _m_a_s_k(_i)====0000, then DDDDPPPPSSSSLLLLDDDDLLLLTTTT will attempt to maximize the diagonal element
  320.      ||||AAAAiiiiiiii||||.
  321.  
  322.  
  323.  
  324.  
  325.  
  326.  
  327.                                                                         PPPPaaaaggggeeee 5555
  328.  
  329.  
  330.  
  331.  
  332.  
  333.  
  334. DDDDPPPPSSSSLLLLDDDDLLLLTTTT((((3333SSSS))))                                                        DDDDPPPPSSSSLLLLDDDDLLLLTTTT((((3333SSSS))))
  335.  
  336.  
  337.  
  338.    MMMMeeeemmmmoooorrrryyyy uuuussssaaaaggggeeee
  339.      The returned value of DDDDPPPPSSSSLLLLDDDDLLLLTTTT____SSSSttttoooorrrraaaaggggeeee(((()))) is an estimate of the amount of
  340.      storage required (in millions of bytes) by the solver's data structures
  341.      for a given matrix system.
  342.  
  343.    OOOOuuuutttt----ooooffff----ccccoooorrrreeee FFFFaaaaccccttttoooorrrriiiizzzzaaaattttiiiioooonnnn
  344.      The storage associated with the factor can be managed in two ways.  The
  345.      DDDDPPPPSSSSLLLLDDDDLLLLTTTT____FFFFaaaaccccttttoooorrrr(((()))) routine allocates memory for the factor and manages it
  346.      internally, releasing it only when DDDDPPPPSSSSLLLLDDDDLLLLTTTT____DDDDeeeessssttttrrrrooooyyyy(((()))) is called.  The
  347.      alternative is to do out-of-core factorization by calling
  348.      DDDDPPPPSSSSLLLLDDDDLLLLTTTT____FFFFaaaaccccttttoooorrrrOOOOOOOOCCCC(((()))). This routine uses a small amount of in-core memory,
  349.      placing the remainder of the factor matrix on disk as it is computed.
  350.      The user can call DDDDPPPPSSSSLLLLDDDDLLLLTTTT____OOOOOOOOCCCCPPPPaaaatttthhhh(((()))) to indicate the directory in which
  351.      the factor file should be written, and DDDDPPPPSSSSLLLLDDDDLLLLTTTT____OOOOOOOOCCCCLLLLiiiimmmmiiiitttt(((()))) to indicate how
  352.      much memory to use to hold portions of the factor matrix in-core.  More
  353.      in-core memory generally leads to less disk I/O and higher performance
  354.      during the factorization.  The only required change is to move from in-
  355.      core factorization to out-of-core factorization is the change from
  356.      DDDDPPPPSSSSLLLLDDDDLLLLTTTT____FFFFaaaaccccttttoooorrrr(((()))) to DDDDPPPPSSSSLLLLDDDDLLLLTTTT____FFFFaaaaccccttttoooorrrrOOOOOOOOCCCC(((()))).  The other routines
  357.      (DDDDPPPPSSSSLLLLDDDDLLLLTTTT____SSSSoooollllvvvveeee(((()))), DDDDPPPPSSSSLLLLDDDDLLLLTTTT____DDDDeeeessssttttrrrrooooyyyy(((()))), etc.) handle out-of-core factors
  358.      transparently.  Note that DDDDPPPPSSSSLLLLDDDDLLLLTTTT____FFFFaaaaccccttttoooorrrrOOOOOOOOCCCC(((()))) and subsequent calls to
  359.      DDDDPPPPSSSSLLLLDDDDLLLLTTTT____SSSSoooollllvvvveeee(((()))) are not parallelized (but calls to DDDDPPPPSSSSLLLLDDDDLLLLTTTT____SSSSoooollllvvvveeeeMMMM(((()))) are
  360.      parallelized, as discussed below).
  361.  
  362.    MMMMuuuullllttttiiiipppplllleeee RRRRiiiigggghhhhtttt----HHHHaaaannnndddd----SSSSiiiiddddeeeessss
  363.      DDDDPPPPSSSSLLLLDDDDLLLLTTTT can solve for large numbers of right-hand-sides with one call to
  364.      DDDDPPPPSSSSLLLLDDDDLLLLTTTT____SSSSoooollllvvvveeeeMMMM(((()))).  It solves these right hand sides in parallel, with
  365.      each processor solving up to four at a time for in-core systems and up to
  366.      PPPPSSSSLLLLDDDDLLLLTTTT____OOOOOOOOCCCCBBBBLLLLKKKK at a time for out-of-core systems, where PPPPSSSSLLLLDDDDLLLLTTTT____OOOOOOOOCCCCBBBBLLLLKKKK is
  367.      an environment variable whose default value is 1.
  368.  
  369.    IIIInnnn----ppppllllaaaacccceeee SSSSoooollllvvvveeeessss
  370.      Both DDDDPPPPSSSSLLLLDDDDLLLLTTTT____SSSSoooollllvvvveeee(((()))) and DDDDPPPPSSSSLLLLDDDDLLLLTTTT____SSSSoooollllvvvveeeeMMMM(((()))) allow the solution vector(s) to
  371.      overwrite the right-hand-side(s) when identical vectors or matrices are
  372.      supplied to these routines.  For example,
  373.  
  374.       CALL DPSLDLT_SOLVE(token, b, b)
  375.  
  376.  
  377.      takes the right-hand-side input from _b and also returns the solution
  378.      vector in _b.  When this option is used with DDDDPPPPSSSSLLLLDDDDLLLLTTTT____SSSSoooollllvvvveeeeMMMM(((()))), the leading
  379.      dimensions for the solution and right-hand-side matrices must agree.  The
  380.      amount of memory actually saved by performing an in-place solve depends
  381.      on the number of right-hand-sides used.  For a single right-hand-side,
  382.      there are no net savings versus an out-of-place solve because a temporary
  383.      copy of the input vector is made internally.  For multiple right-hand-
  384.      sides the memory overhead decreases as the ratio of right-hand-sides to
  385.      processors used increases.
  386.  
  387.    AAAArrrrgggguuuummmmeeeennnnttttssss
  388.      These routines have the following arguments:
  389.  
  390.  
  391.  
  392.  
  393.                                                                         PPPPaaaaggggeeee 6666
  394.  
  395.  
  396.  
  397.  
  398.  
  399.  
  400. DDDDPPPPSSSSLLLLDDDDLLLLTTTT((((3333SSSS))))                                                        DDDDPPPPSSSSLLLLDDDDLLLLTTTT((((3333SSSS))))
  401.  
  402.  
  403.  
  404.      _t_o_k_e_n     (input) DDDDPPPPSSSSLLLLDDDDLLLLTTTT can handle multiple matrices simultaneously.
  405.                The _t_o_k_e_n distinguishes between active matrices.  The _t_o_k_e_n
  406.                passed to DDDDPPPPSSSSLLLLDDDDLLLLTTTT____FFFFaaaaccccttttoooorrrr(((()))) must match the _t_o_k_e_n used in some
  407.                previous call to DDDDPPPPSSSSLLLLDDDDLLLLTTTT____PPPPrrrreeeepppprrrroooocccceeeessssssss(((()))).  Similarly, the _t_o_k_e_n
  408.                passed to DDDDPPPPSSSSLLLLDDDDLLLLTTTT____SSSSoooollllvvvveeee(((()))) must match the _t_o_k_e_n used in some
  409.                previous call to DDDDPPPPSSSSLLLLDDDDLLLLTTTT____FFFFaaaaccccttttoooorrrr(((()))).  0000 <<<<==== _t_o_k_e_n <<<<==== 11119999....
  410.  
  411.      _m_e_t_h_o_d    (input) An integer specifying the ordering method used during
  412.                preprocessing.  0000 <<<<==== _m_e_t_h_o_d <<<<==== 4444....
  413.  
  414.      _n         (input) The number of rows and columns in the matrix _A.  _n >>>>====
  415.                0000....
  416.  
  417.      _p_o_i_n_t_e_r_s, _i_n_d_i_c_e_s, _v_a_l_u_e_s
  418.                (input) The _p_o_i_n_t_e_r_s and _i_n_d_i_c_e_s arrays store the non-zero
  419.                structure of sparse input matrix _A in Harwell-Boeing or
  420.                Compressed Sparse Column (CSC) format.
  421.  
  422.                The _p_o_i_n_t_e_r_s array stores _n+1 integers, where _p_o_i_n_t_e_r_s[[[[_i]]]] gives
  423.                the index in _i_n_d_i_c_e_s of the first non-zero in column _i of _A.
  424.                The _i_n_d_i_c_e_s array stores the row indices of the non-zeros in _A.
  425.                The _v_a_l_u_e_s array stores the non-zero values in the matrix _A.
  426.  
  427.      _n_o_n__z_e_r_o_s (output) The number of non-zero values in _L.
  428.  
  429.      _o_p_s       (output) The number of floating-point operations required to
  430.                factor _A.
  431.  
  432.      _m_a_s_k      (input) An integer array of length _n used in
  433.                DDDDPPPPSSSSLLLLDDDDLLLLTTTT____PPPPrrrreeeepppprrrroooocccceeeessssssssZZZZ(((()))).  If _m_a_s_k(_i) ==== 0000, then node _i of matrix A
  434.                is ordered after all of its neighbors in an attempt to avoid a
  435.                zero pivot.
  436.  
  437.      _b         (input) The right-hand-side vector in a DDDDPPPPSSSSLLLLDDDDLLLLTTTT____SSSSoooollllvvvveeee(((()))) call.
  438.  
  439.      _x         (output) The solution vector in a DDDDPPPPSSSSLLLLDDDDLLLLTTTT____SSSSoooollllvvvveeee(((()))) call.
  440.  
  441.      _n_r_h_s      (input) The number of right-hand side vectors present in a
  442.                DDDDPPPPSSSSLLLLDDDDLLLLTTTT____SSSSoooollllvvvveeeeMMMM(((()))) call.
  443.  
  444.      _B         (input) The right-hand-side matrix in a DDDDPPPPSSSSLLLLDDDDLLLLTTTT____SSSSoooollllvvvveeeeMMMM(((()))) call.
  445.                Must be stored in column-major order.
  446.  
  447.      _l_d_b       (input) The leading dimension of matrix _B. _l_d_b >>>>==== _n.
  448.  
  449.      _X         (output) The solution matrix in a DDDDPPPPSSSSLLLLDDDDLLLLTTTT____SSSSoooollllvvvveeeeMMMM(((()))) call. Must
  450.                be stored in column-major order.
  451.  
  452.      _l_d_x       (input) The leading dimension of matrix _X. _l_d_x >>>>==== _n.
  453.  
  454.  
  455.  
  456.  
  457.  
  458.  
  459.                                                                         PPPPaaaaggggeeee 7777
  460.  
  461.  
  462.  
  463.  
  464.  
  465.  
  466. DDDDPPPPSSSSLLLLDDDDLLLLTTTT((((3333SSSS))))                                                        DDDDPPPPSSSSLLLLDDDDLLLLTTTT((((3333SSSS))))
  467.  
  468.  
  469.  
  470.      _o_o_c_p_a_t_h   (input) A character array/string with a path to the directory
  471.                where the temporary out-of-core factor files should be stored.
  472.                If this path is on a striped (or raid-0) file system, the
  473.                performance of the out-of-core solves can be considerably
  474.                improved.  The default path is ////uuuussssrrrr////ttttmmmmpppp.
  475.  
  476.      _o_o_c_l_i_m_i_t  (input) A double precision number indicating the number of
  477.                Mbytes of random access memory that should be used for factor
  478.                storage during a call to DDDDPPPPSSSSLLLLDDDDLLLLTTTT____FFFFaaaaccccttttoooorrrrOOOOOOOOCCCC(((()))). Note that there
  479.                are many other arrays used besides those directly used to store
  480.                the factorization, so total RAM usage by the solve will exceed
  481.                this number.  The default is 64 MB.
  482.  
  483.      _p_e_r_m      (output) An integer array of length _n containing the
  484.                permutation used to reorder matrix A.
  485.  
  486. EEEENNNNVVVVIIIIRRRROOOONNNNMMMMEEEENNNNTTTT VVVVAAAARRRRIIIIAAAABBBBLLLLEEEESSSS
  487.      Two environment variables can affect the operation of ordering methods 3
  488.      and 4.  SSSSPPPPAAAARRRRSSSSEEEE____NNNNUUUUMMMM____OOOORRRRDDDDEEEERRRRSSSS can be used to change the number of orderings
  489.      performed from the default of OOOOMMMMPPPP____NNNNUUUUMMMM____TTTTHHHHRRRREEEEAAAADDDDSSSS for Method 3 and
  490.      (2*OOOOMMMMPPPP____NNNNUUUUMMMM____TTTTHHHHRRRREEEEAAAADDDDSSSS) for Method 4.  SSSSPPPPAAAARRRRSSSSEEEE____FFFFEEEEEEEEDDDDBBBBAAAACCCCKKKK____FFFFIIIILLLLEEEE can be set to the
  491.      path and file name where the feedback information will be kept;
  492.      otherwise, the default feedback file is $$$$HHHHOOOOMMMMEEEE////....ssssppppaaaarrrrsssseeeeFFFFeeeeeeeeddddbbbbaaaacccckkkk.  This file
  493.      will be less than 5K bytes.
  494.  
  495.      The environment variable OOOOMMMMPPPP____NNNNUUUUMMMM____TTTTHHHHRRRREEEEAAAADDDDSSSS determines the number of
  496.      processors that are used for the numerical factorization and solve
  497.      phases.  Out-of-core solves can be performed in groups of PPPPSSSSLLLLDDDDLLLLTTTT____OOOOOOOOCCCCBBBBLLLLKKKK
  498.      right-hand-sides per processor.  Setting the environment variable
  499.      PPPPSSSSLLLLDDDDLLLLTTTT____VVVVEEEERRRRBBBBOOOOSSSSEEEE causes DDDDPPPPSSSSLLLLDDDDLLLLTTTT to output information about the
  500.      factorization.
  501.  
  502. NNNNOOOOTTTTEEEESSSS
  503.      These routines are optimized and parallelized for the SGI R8000 and
  504.      R1x000 platforms.
  505.  
  506. SSSSEEEEEEEE AAAALLLLSSSSOOOO
  507.      IIIINNNNTTTTRRRROOOO____SSSSCCCCSSSSLLLL(3S), IIIINNNNTTTTRRRROOOO____SSSSOOOOLLLLVVVVEEEERRRRSSSS(3S), DDDDPPPPSSSSLLLLDDDDUUUU(3S), ZZZZPPPPSSSSLLLLDDDDLLLLTTTT(3S), ZZZZPPPPSSSSLLLLDDDDUUUU(3S)
  508.  
  509.  
  510.  
  511.  
  512.  
  513.  
  514.  
  515.  
  516.  
  517.  
  518.  
  519.  
  520.  
  521.  
  522.                                                                         PPPPaaaaggggeeee 8888
  523.  
  524.  
  525.  
  526.  
  527.  
  528.  
  529.